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Abstract. Fault injection is a key step in the validation of fault-tolerant design. This paper 
introduces a novel simulation-based fault injection method. The proposed method is 
implemented directly in Test Bench (TB) by modifying the signal values in VHDL model, 
and the fault type and ratio, transient fault duration and fault injection rate etc. can be easily 
adjusted according to requirements. It also supports the random fault injection by giving a 
random distribution. Compared with existing approaches, this simple method that can be 
designed and used immediately has a better extendibility and a better tailing capability due 
to the fact that it is field programmable in TB. Fault injection experiment shows that this 
approach is flexible and easy to use. 

1. Introduction 

The performance of digital processor has been quickly improved with the increasing integrated 
level and decreasing feature size in recent years. However, because of its high integrated level, low 
threshold voltage and high clock frequency, the processor is more sensitive to crosstalk, 
electromagnetic interference and heavy-ion radiation etc. It is easy to arouse failures inside the chip 
[1], [2]. So, some reliability enhancement measures, generally including three levels: system level, 
circuit level and device level [3], are adopted to improve chip dependability and ensure each 
function carried out correctly as far as possible.  

In system level strengthening, front-end designers take some architecture reinforcement 
measures to implement fault-tolerance [4], [5], [6]. Such design methods are mainly to resist 
permanent or transient faults caused by bad external environment. For the verification of fault-
tolerance, it is necessary to inject failures and then check the operations to determine whether the 
processor still run correctly. The goal of this paper is to present a simulation-based fault injection 
method. This method on the principle of simplicity and high efficiency is easy to achieve and use. 

The rest of the paper is organized as follows. Section 2 introduces the related works. In Section 3, 
the proposed fault injection mechanism is described. The fault injection experiments are depicted in 
Section 4, and the proposed method is evaluated in Section 5. Finally, we present conclusions in 
Section 6. 
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2. Related Works 

In reliability demonstration, the dummy faults used to simulate the soft-errors caused by real 
environment are injected into a running system, after which an analysis of correctness is made to 
determine whether the adopted reliability mechanisms have the intending fault-tolerant capability. 
Fault injection techniques can be classified in three main categories: hardware fault injection, 
software fault injection and simulation-based fault injection [7], [8].  

The simulation-based fault injection technique uses the VHDL model as the target system, and it 
usually includes two implementation methods: modifying the VHDL model and altering the value 
of signals and variables defined in the prototype [9].  

The modification of VHDL model mainly uses the saboteur or mutation method. It is necessary 
to add two kinds of dedicated components called “saboteur” and “mutant” which are usually 
inactive during normal system operation and activated only to inject faults [7], [8], [9], [10]. A 
saboteur is a special VHDL component added to the original model. The mission of this component 
is to alter the value and/or timing characteristics of one or more signals when a fault is injected, and 
it remains inactive during the normal operation of the system [8]. A mutant is a component which 
replaces another component. While inactive, it works like the original component, but when 
activated, it behaves like the component in presence of faults [9]. 

The saboteur and mutant can be designed using the full strength of VHDL language. Therefore, 
this approach can support a wide range of fault model that can be expressed within the VHDL 
semantics. By analyzing the drawbacks of some models of existing saboteurs and mutants, J. C. 
Baraza et al. give out an enhancement of fault injection techniques based on the modification of 
VHDL code [11], and propose some new models which can be automatically inserted into a model 
in order to perform a fault injection campaign. A typical application paradigm of modification of 
VHDL-model method, S. Nimara et al. come up with four types of saboteurs and analyze the impact 
of probabilistic faults in interconnects by means of HDL saboteur-based simulated fault injection 
using Wishbone bus as the target system [12]. However, the saboteur or mutation introduces 
redundant modules and a lot of control signals, and is of high spending and complex in realization. 

Compared with saboteur or mutant, the approach of altering the values of signals and variables 
has the advantages that there is no redundant components are introduced [9], [13]. Because its 
implementation is relatively simple, it is more suitable for using at the earlier stage of the 
dependability design, achieving earlier validation and evaluation of reliability mechanisms [9], [14]. 
The technique of altering the signal values is essentially to set a fault value for signals defined in 
VHDL-model, usually including stuck-at-0/1, open lines, indetermination, bit-flip, and pulse. D. Gil 
et al. think that the simulations of the four fault models, including stuck-at, bit-flip, indetermination, 
and delay, can represent transient physical faults of different types: transient in power supply, 
crosstalk, electromagnetic interferences, temperature variation, αradiation and cosmic radiation. The 
physical faults above can directly vary the values of voltage and current of the logical levels of 
circuit nodes. Therefore, they modify the values of the signals and variables using a simulation-
based technique to simulate the above four fault models, developing a fault injection tool. Some of 
their study and related experimental results are shown in [15], [16]. In [17], a simulation-based fault 
injection technique is adopted to inject transient and permanent single and multi-bit faults by 
forcing the signal to a selected fault value using the Force and Release statements(the features in the 
VHDL 2008 standard). A fault injection unit is developed to inject faults into a VHDL target 
system using force and release assignments. However, unlike the proposed method, this unit is still 
needed to be added to the VHDL source code in the set up phase to create a mutated VHDL source 
code. In our work, an altering signal method by Force is also introduced. The detailed comparisons 
of the proposed method and [17] are described in Section 5. 
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So far, the fault injection techniques aiming at VHDL model have been widely studied and many 
systematic tools also have been proposed, such as MEFISTO [9]，VFIT [13]，MEFISTO-L [18]，
VERIFY [19]. MEFISTO utilizes the simulator built-in commands to alter the values of signals and 
variables, thus the realization of fault injection. The subsequent version MEFISTO-L realizes the 
injection campaign by inserting fault injection components. VFIT is also a fault injection tool aimed 
at VHDL model and the three techniques of simulator built-in command, saboteur and mutant are 
adopted in its implementation. VERIFY achieves the fault injection by adding the fault behavior 
description to the elementary components (such as NOT-gate) that can be executed directly by 
simulator during the fault injection campaign. All of these tools attain fault injection aiming at 
VHDL models from different perspectives, and from a certain extent, can automatically trace and 
further analyze the operation conditions of system with the present of injected failures. However, it 
is the systematicness and comprehensiveness which make the fact that a lot of manpower, more 
material resources, and a longer development cycle are needed to realize such tools. 

Actually, during the prophase of design, it is unable or unnecessary to use such a tool to validate 
the availability of fault-tolerant strategies. A key process in the early verification is the realization 
of fault injection. That is to give out a method for fault injection in a simple and practicable, 
economical and efficient way, and ensure that the results caused by injected errors can be analyzed. 
Given all this, this paper presents a fault injection technique that is implemented directly in Test 
Bench by modifying the values of signals and variables in VHDL model. The notable advantages of 
this method over existing approaches are simple and efficiency. With the capability of field 
realization and be used immediately, it improves the speed of depending design and verification, 
and has a better extendibility and a better tailing capability comparing with the existing approaches. 

3. Simulation-based Fault Injection in Test Bench 

The proposed method performs fault injection with a short description in TB file, and its block 
diagram is shown in Fig.1. This mechanism includes four parts: Target Signal Set (Sn), Fault 
Generator, Fault Injector, and VHDL Model. The Sn is created based on VHDL Model and there is 
no information interaction between Sn and VHDL Model during the simulation time, hence the dot 
line between them in Fig.1. 

 

Figure 1  Simulation-based fault injection mechanism in TB. 
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3.1. Target Signal Set 

The fault injection mechanism based on TB simulation needs firstly to extract the failure points on 
which the signals can make up the Sn. Any signals can be added to Sn as long as a failure needs to be 
activated on it. Sn can be expressed as follows: 

 1 2 3= , ,n nS s s s s  

where n indicates the total number of elements of set Sn, and the elements si (1 ≤ i ≤ n) actually 
represent the modularization index path of a target signal in the hiberarchy through which a specific 
target signal can be referenced. Sn can be created as a file in which each element si occupies a line 
for the convenience of element indexing. 

3.2. Fault Generator 

The proposed method can simulate two fault types: permanent fault and transient fault. The 
permanent fault includes four models: stuck-at-0, stuck-at-1, open line and indetermination. The 
transient fault includes three models: bit flip, pulse and indetermination. 

As shown in Fig.1, the inputs of Fault Generator involve the value of n obtained from Sn and the 
initial informations specified before the starting of simulation. The initial informations are 
presented as follows. 

Initial Fault Type (IFT): can be specified as Permanent or Transient for nonrandom fault 
injection. 

Permanent Fault Rate (PFR): can be specified as a real number in the range of [0, 100] that 
denotes the proportion of permanent fault in the random fault injection campaign. For example, if 
PFR is specified as a, the proportion of permanent fault is a%, and that of transient fault is (100-a)%. 

Initial Fault Model (IFM): can be specified as one of the fault models (stuck-at-0, stuck-at-1, 
open line, bit flip, pulse and indetermination) according to the specified IFT for nonrandom fault 
injection. 

Initial Transient Fault Duration (ITFD): can be specified as a range from which the number of 
clock cycle that the transient fault last for is achieved. For example, if ITFD is specified as [0.01, 
10], a real number is achieved uniformly and randomly from the range of [0.01, 10], then multiplied 
by clock period time, and the product time is taken as the duration of transient fault. If IFT has been 
specified as Permanent, ITFD is unavailable and the permanent fault is active until the end of 
simulation. 

Time Between Failures (TBF): can be specified as a range from which the number of clock cycle 
between two fault injections is achieved. For example, if TBF is specified as [100, 150], a real 
number is obtained uniformly and randomly from the range of [100, 150], then multiplied by clock 
period time, and the production time is taken as the time between two failures. Changing the lower 
and upper limits of this range can achieve the goal of adjusting the mean time between two failures. 
The smaller the upper limit is, the shorter the mean time between two failures, and the higher the 
density with which faults are injected. 

Initial Target Signal Index (ITSI): can be specified as an integer in the range of [1, n] that 
denotes the element index in Sn for nonrandom fault injection. 

Random Type (RT): can be specified as a random distribution that determines the fault model 
and target signal index in random fault injection. In our application, RT can be specified as 
Nonrandom or Uniform_Distribution (the more random distributions can be further added). 
Nonrandom actually indexes none of the random type is used in fault injection campaign, and a 
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fault is injected into the system according precisely to the initial information after each execution of 
this injection mechanism. Uniform_Distribution means that the fault model and target signal index 
are generated based on uniform distribution, thus the random fault injection achieving. At this time, 
the input informations IFM and ITSI are neglected. 

The function of the Fault Generator is according to the RT to generate the control signals of 
Fault Injector. Working in real environment, the processor failure usually has the characteristics of 
some kind of randomness. Using the random functionality of the proposed Fault Generator, a better 
simulation of the random characteristics of soft errors is obtained in a simple way. Simulating the 
random faults by designing corresponding random distribution procedure is a notable advantage of 
the proposed method. 

3.3. Fault Injector 

The fault injector receives the information coming from Fault Generator, including Fault Type (FT), 
Fault Model (FM), Transient Fault Duration (TFD) and target signal index (i), and does the fault 
injection operations. 

The Fault Injector firstly takes the target signal out from Sn according to index i and sets it to a 
specified failure value by force, thus the implementing of fault injection. It is necessary to perform 
different operations by different fault model during the fault injection campaign. The pseudo-code 
description of Fault Injector in QuestaSim simulator is shown in Fig. 2. The calls 
“Init_Signal_Spy( )” and “Siganl_Force( )” that implement the signal mirroring and force a signal 
to a specified value respectively are the library functions provided by QuestaSim simulator [20]. In 
Fig. 2, the value of the target signal (TgtSignal) is mirrored onto the signal “Sig” defined in TB, and 
then the target signal value in normal operation of the processor can be obtained by checking the 
Sig. By inverting the normal value of Sig and assigning it to the target signal, the simulations of 
pulse and bit flip can be realized. 

It is worth noting that the way of signal mirroring and force assignment may be different 
according to different simulator. The “Init_Signal_Spy( )” and “Signal_Force( )” are provided by 
QuestaSim simulator, and however “Signal_Agent( )” and “Force( )” are used in the simulator 

 

Figure 2  Pseudo-code description of Fault Injector in QuestaSim simulator. 
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Active-HDL. In VHDL 2008 standard, new features were introduced to VHDL language. One of 
these features is signal assignment with force and release commands used in a sequential statement 
in the VHDL description [21], thus greatly reducing the dependence on simulation tools of the 
proposed method. 

4. Fault Injection Experiments 

Fig. 1 shows a complete set of fault injection mechanism that can be field designed in TB and put 
into use immediately to validate and evaluate the reliability design. By far, in our research team, the 
proposed method has been widely used in the design of Revealer1601prh processor, the National 
Science and Technology Major Project. For the validation and evaluation of fault-tolerant strategies, 
the designer of each module only needs to create the Sn and set the initial parameters of Fault 
Generator before the starting of simulation. 

The description of the applicability of the proposed method is presented below by fault injection 
experiments in which a timer/performance-counter of coprocessor of Revealer1601prh is taken as a 
target module. 

4.1. Configurable Timer/Performance-counter 

The Revealer1601prh processor is a multi-core chip based on network-on-chip of which the 
PowerPC470 as the master core, sixteen homogeneous high performance DSPs as slaver cores and a 
variety of peripheral controllers are inside. Each slaver core totally includes 9 ways configurable 
timer/performance-counter, as shown in Fig.3. The Timer0 to Timer7 can be used as a timer or 
performance-counter respectively by configuring the control register file. If configured as a timer, 
the value of internal counter will add 1 at each clock cycle, thus the function of timing. If 
configured as a performance-counter, the counter counts the core’s inner events that inputted from 
the interface of Pf_Source (256 event sources are supported). In addition, all of the Timer0 to 
Timer7 can generate interrupt signals outputted from InterruptOut. 

Another notable advantage of this configurable timer/performance-counter is that it can work in 
triplication fault-tolerant mode according to the index of inputted signal TM_En. An additional 
Timer8 invisible to users is therefore introduced for the purpose of triple modular fault-tolerant. 
When TM_En is enabled, the timer/performance-counter is reinforced by binding each three timers 
of the nine ways, thus the total three triple-modular timers (TM_Timer0 to TM_Timer2) are 

 

Figure 3  Configurable timer/performance-counter architecture. 
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provided. The input and output of each timer are voted by triple modular voter (TM_Voter). If 
TM_En is invalid, all the Timer0 to Timer7 work in single mode independently without the 
capability of fault-tolerance. 

4.2. Fault Injection Experiments Based on Timer/Performance-counter 

In this section, the fault injection campaigns based on the triplication working mode (TM_En is 
enabled) of the configurable timer/performance-counter are presented. In the experiments, 
TM_Timer1 is configured as a performance-counter. Because TM_Timer0 and TM_Timer2 are not 
started during all the injection campaign, only TM_Timer1 is taken as the target module. That is to 
say the Sn only includes all the signals defined in TM_Timer1 and the practice shows that n=1213. 
In our experiments, the performance event counted by TM_Timer1 is “the number of instructions 
the core executed”. The simulation platform is QuestaSim simulator. The experiments are divided 
into two categories, one of which evaluates the reliability of timer/performance-counter without the 
permanent fault present and the other has the same simulation conditions excepts that a random 
permanent fault is introduced. 

4.2.1.  First Category Experiment 

The first category experiment only sets one injection mechanism. The experiment conditions are 
described as follows: 

1. The RT is specified as Uniform_Distribution. 
2. Only the transient faults are injected into the target system, no permanent fault exists (the PFR 

is specified as 0). 
3. “The number of instructions the core executed” is taken as the event source. One thousand 

program segments are executed by core, and that the number of instructions in each program 
segment is unfixed in the range of 100 to 300. 

4. Two sets of ITFD are used. Namely, transient fault duration is set to [0.01, 10]T and [10, 80]T 
respectively where T is the system clock cycle and T=2.5 ns. (The ITFD is specified as [0.01, 10] 
and [10, 80] respectively.) 

5. Seven sets of TBF are used corresponding to each set of ITFD respectively. (The TBF is 
specified as [0, 50], [50, 100], [100, 150], [150, 200], [200, 250], [250, 300], and [300, 350] 
respectively.) 

The injection procedure starts to run when the TM_Timer1 begin to work. One thousand 
performance counts, each of which counts the number of instructions in a program segment, are 
performed by TM_Timer1. Comparing each counter result achieved from TM_Timer1 with the 
actual number of instructions of each program segment, we can get the malfunction times of 
TM_Timer1 with the transient fault present, and then the failure rate is computed. The running 
details can be checked by simulation waves and printed trace files. Fig. 4 shows a wave segment in 
a certain period of time, in which a transient fault with the fault model of pulse lasting for 1301ps is 
activated on the bit signal TIMCONT(5)(22) at the simulation time 117113.242ns and a bit flip is 
activated on the bit signal AdderB(16) at 117253.044ns. 

Fig. 5 shows the variation of failure rate with the TBF. By Fig.5, for a fixed TBF, the longer the 
transient fault duration is, the higher the failure rate, and with the increasing of TBF, a decreasing 
failure rate results. 

We extend the performance-count task by increasing the number of instructions the core 
executed in each program segment to 300 to 600 and the other conditions remains, and the test 
results are shown in Fig. 6. 
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5. Evaluation of The Proposed Method 

The main contribution of this work is the simple fault injection technique which is realized directly 
in TB. The fault injection campaign shows the proposed method is easy to use and has a good 
applicability. In our work, the force assignment is used to inject faults into a VHDL system and a 
fault injection procedure is realized with the QuestaSim simulator.   

There are two kinds of ways to realize force assignment. The first one is calling the function that 
is provided by simulator, such as the one used in this paper. However, this method is simulator-
dependent. The other way without dependent on simulator is to use the Force and Release 
statements of the VHDL 2008 standard, as it does in [17]. In order to further explain the differences 
between [17] and the proposed method, a detailed comparison of [17] and the proposed method is 
shown in Table Ⅰ. 

By Table Ⅰ, although the  force assignment fault injection method is adopted in both the 
mechanisms, a clear distinction between these two approaches exists. In [17], the fault injection unit 
(FIU) is developed to implement fault injection using force and release assignments. The user 
specifies the FIUs and all the FIUs are inserted into the source code before the compiling phase. 
The distributed force assignment method is adopted and the FIU is inserted at each injection point 
in [17]. However, a centralized force assignment in TB is realized in the proposed method, so it 
does not need to preprocess for VHDL model. This improvement is conducive to further implement 
rapid fault injection.  

Besides, because the proposed method is directly programmed in TB, it is very easy to realize 
the random injection that is not supported in [17]. Generally speaking, the proposed fault injection 
mechanism has a lower implementation cost than [17]. 

6. Conclusions 

Fault injection is a critical step in dependability verification. This paper presents a simulation-based 
fault injection mechanism that is directly realized in TB. This method simple in achievement only 
needs a short description in TB for a random or nonrandom injection campaign. The injection 
experiments aiming at a configurable timer/performance-counter show that the presented method is 
very flexible and easy to use due to the assignable initial parameters by which specify the fault type 
and rate, adjust the transient fault duration, and set the time between failures to control injection rate. 
Besides, it has a better extendibility and a better tailing capability compared with the common 
approaches because it is field programmable in TB. 

Table 1 Comparison of [17] and the proposed method 

 VHDLSFI in [17] The proposed method 

Fault injection Distributed force assignment Centralized force assignment in TB 
Initial configuration Parameters initialization is needed Parameters initialization is needed 

Fault model 

Single and multiple. 
Permanent: tuck-at-0/1, bridging, open lines, 
indetermination. 
Transient: bit-flip, pulse, indetermination. 

Single and multiple. 
Permanent: tuck-at-0/1, open lines, 
indetermination. 
Transient: bit-flip, pulse, indetermination. 

System input VHDL model and object signals VHDL model and object signals 
Random injection Nonsupport Support 

Preprocess of VHDL 
model 

Required (to insert FIU to create a mutated 
VHDL source code, generate a simulator macro) Not Required (directly run the simulation) 

Analysis of results Analysis of results based on trace files. Analysis of results based on trace files and wave 
froms. 

Implement cost Higher Lower 
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